skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Klee, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Communication Brain-Computer Interfaces (cBCIs) represent a crucial technological advancement for individuals with severe motor disabilities as they offer a direct pathway to express their thoughts and needs without physical movement. These systems commonly leverage the P300 ERP, a distinct neural response approximately 300-500ms after a novel stimulus. Language modeling presents a promising approach to enhancing the performance and usability of cBCIs. However, integrating language models with cBCI systems presents unique challenges, including balancing model complexity with real-time processing requirements and optimizing system performance parameters. This study utilizes simulations of online cBCI data to investigate the impact of different language models on typing rate and accuracy. 
    more » « less
  2. Abstract Objective.The RSVP Keyboard is a non-implantable, event-related potential-based brain-computer interface (BCI) system designed to support communication access for people with severe speech and physical impairments. Here we introduce inquiry preview (IP), a new RSVP Keyboard interface incorporating switch input for users with some voluntary motor function, and describe its effects on typing performance and other outcomes.Approach.Four individuals with disabilities participated in the collaborative design of possible switch input applications for the RSVP Keyboard, leading to the development of IP and a method of fusing switch input with language model and electroencephalography (EEG) evidence for typing. Twenty-four participants without disabilities and one potential end user with incomplete locked-in syndrome took part in two experiments investigating the effects of IP and two modes of switch input on typing accuracy and speed during a copy-spelling task.Main results.For participants without disabilities, IP and switch input tended to worsen typing performance compared to the standard RSVP Keyboard condition, with more consistent effects across participants for speed than for accuracy. However, there was considerable variability, with some participants demonstrating improved typing performance and better user experience (UX) with IP and switch input. Typing performance for the potential end user was comparable to that of participants without disabilities. He typed most quickly and accurately with IP and switch input and gave favorable UX ratings to those conditions, but preferred standard RSVP Keyboard.Significance.IP is a novel multimodal interface for the RSVP Keyboard BCI, incorporating switch input as an additional control signal. Typing performance and UX and preference varied widely across participants, reinforcing the need for flexible, customizable BCI systems that can adapt to individual users. ClinicalTrials.gov Identifier: NCT04468919. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026